

Supporting physical activity as part of intelligent digital management of chronic conditions

Paul Curzon

Norman Fenton, William Marsh, Akram Alomainy (and many others)

Queen Mary University of London

Intelligent sensor networks for healthcare

- PAMBAYESIAN is an EPSRC funded project on intelligent sensor networks for healthcare
 - to start Summer/Autumn 2017
- Aim to provide intelligent technology that helps manage chronic conditions
 - Reduce load on clinicians by reducing dependency
 - Support both the clinician and the patient

Chronic disease and physical activity

- Physical activity is a major factor in much chronic disease
- A major impact of chronic disease is often that it restricts physical activity
- More physical activity can also be part of the solution

Help patients and clinicians

- Intelligent sensor-based technology may help clinicians and patients better manage conditions together.
 - For patients allow them to rely less on advice from medical staff
 - Help take day-to-day decisions about their care and activity
 - Support still there when needed
 - Allow clinicians to remote monitor when necessary and provide more support when they do intervene

Remote monitoring of patients

- Problems with existing approaches:
 - Relies too much on clinicians to interpret sensor readings
 - patients can be confused by information presented so become more reliant not less on medical staff
 - Can lead to higher loads for clinicians
- Our project will explore the use of Bayesian Belief
 Networks to address the issues

Bayesian Belief Networks

- Traditional machine learning builds predictive models based on patterns in data alone
- Bayesian Networks combine expert knowledge with collected data to create and adapt the model
- Create a network of causal links with probabilities
 - include factors that cannot be measured directly such as underlying disease state
 - Data eg from individual patients then modifies the probabilities leading to predictions to aid decision making
 - Scope for explantions
- How to present complex probabilistic information to non-experts and in a way that supports clinicians?

Case Studies

- the management of rheumatoid arthritis
 - restricts physical activity
 - ability to be active and pain involved critical inputs to system
- diabetes in pregnancy
 - alleviated through exercise

Interaction Design

Two inter-related problems

- Make it work for clinicians
- Make it work for patients

Make it work for clinicians?

- Study the way clinicians work
 - interviews, contextual design
- Understand clinical pathways
 - Determine critical points in clinical pathways where help has most effect
 - Design modified clinical pathways?
- Determine how and when information is needed and decisions taken

Make it work for patients?

- Study patient needs and goals
 - how it fits their lives
 - Develop example illustrative personas and scenarios
- Participatory design with patient groups
- How do we present data from Bayesian networks in a way that helps patients make day to day decisions.

Thank you